Issue	:CE-E-AFJ-07
Date of Issue	:23 May ,2002
Classification	New , Changed , Revised

ENGINEERING DRAFT

Product Description	:Aluminum Electrolytic Capacitor
Product Part Number	:Radial lead type (JIS:04 type) FJ series
Country of Origin	:Malaysia
Marking of the Origin	:Printed on the packaging label(The name of Country of English)
Classification of Spec.	:Product specification
Recommended Applications	:MOTHER BOARD FOR PERSONAL COMPUTER
	For other application, contact our person signed below.
Term of Validity	22 May ,2003 from the date of issue

CUSTOMER USE ONLY	Receipt Record #:
This was certainly received by us.	Date of Receipt :
One copy is being returned to the manufacturer.	Received by:

•No Ozone Depleting Chemicals(ODC's), controlled under the Montreal Protocol Agreement, are used in producing this product.

•This product does not contain PBBOs or PBBs.

•All the materials that are used for this product are registered as "Known Chemicals" in the Japanese act "Law Concerning the Examination and Regulation of Manufacture, etc.of Chemical Substances".

•For the products, which are controlled items subject to the Foreign Exchange and Foreign. Trade Control Law, the export permission according to the Law is necessary.

Matsushita Electronic Devices (M) Sdn.Bhd. No.1 Jalan Pelaga 16/13,40000 Shah Alam,Selangor, Danul Ehsan, MALAYSIA. TEL 60-3-5891-2888

Prepared by :Customer Technology Team Product Technology Group TEL (0774)33-3209(Direct)							
	774)33-3209(D 774)32-3189	irect)					
Approval Check Check Design							
K.Watanabe	H.Yamamoto	S.Nishino	M.Ioka				

No.

Electrolytic Capacitor Engi	neering Draft	CE-E-AFJ-07
A type FJ ser	ies	Page No. Contents
<u>Contents</u>		
Scope		
Parts Number		
Can Size	P.1 ~ P.3	
Standard Rating		
Dimensions and Appearance		
Constructions	P.4	
Performance Characteristics	P.5 ~ P.8	
Marking	P.9	
Others Specifications	P.9	
Parts Lists	P.10 ~ P.11	
Dimensions (Snap-in lead formed type)	P.12	
Taping Shape and Dimensions	P.13 ~ P.14	
Taping Specifications	P.15 ~ P.18	
Notices in using Aluminum Electrolytic Capacitor	P.19 ~ P.22	
Remarks		
Matsushita Electronic Compor	nents Co.,Ltd. LCR Device Com	pany
	r Business Unit	

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
A type FJ series	1

1. Scope

Fixed capacitors for use in electronic equipment, Aluminum electrolytic capacitors with non-solid electrolyte.

2. Parts Number

EEU	FJ	00	000	
2-1	2-2	2-3	2-4	2-5

- 2-1 Aluminum Electrolytic Capacitor Type : Radial lead type (JIS : 04 type)
- 2-2 FJ series
- 2-3 Rated Voltage Code

Voltage Code	0J	1A	1C	1E	1V	1H
Rated Voktage (V.DC)	6.3	10	16	25	35	50

2-4 Capacitance Code : Indicating capacitance in uF by 3 letters.

The first 2 figures are actual values and the third denotes the number of zeros. "R" denotes the decimal point and all figures are the actual number with "R". For example, 1uF is expressed as 1R0 in this case.

ex. 0. 1 μ F R10 , 10 μ F 100 , 1000 μ F 102

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07

A type FJ series

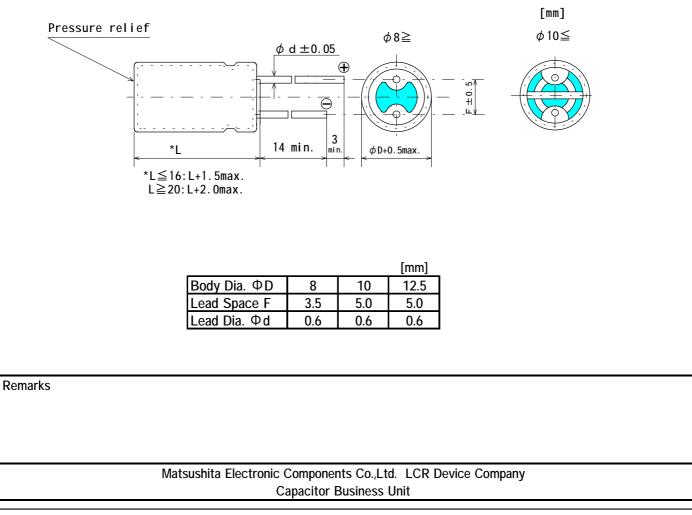
Capacitance and Can Size Table

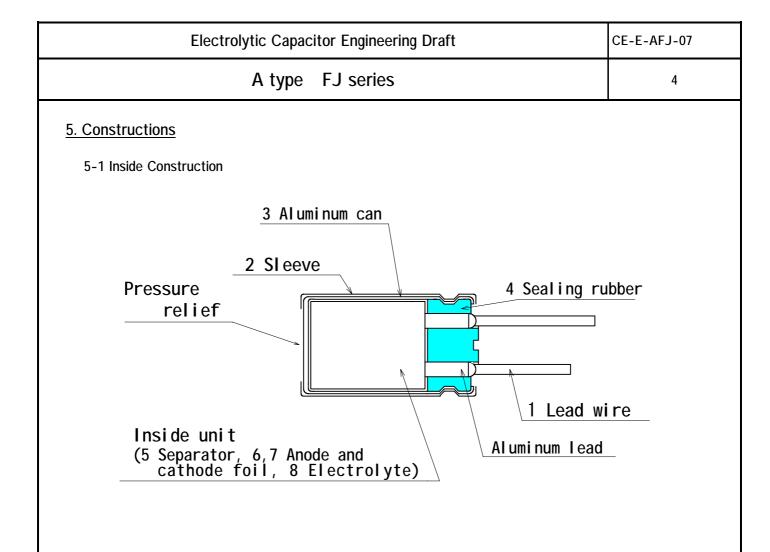
			_		[μF] at 1	20Hz 20°C
V.DC Can Size(ϕ D × L)	6.3	10	16	25	35	50
8X11.5	560	470	330	220	150	100
	820 U	680 U	470 U	330 U	220 U	120 U
	1000 U					
8X15	1200 Y		680 Y			
8X20	1500 L	1000 L	680 L	470 L	330 L	220 L
	1800 Y	1500 Y	1000 Y	680 Y	390 Y	270 Y
	2200 Y					
10X12.5	1000	680	470	330	220	150
	1500 U	1000 U	680 U	470 U	330 U	180 U
10X16	1500	1000	680	470	330	220
	1800 U	1500 U	1000 U	680 U	390 U	270 U
	2200 U					
10X20	2200	1500	1000	680	470	270
	2700 U	2200 U	1500 U	1000 U	560 U	330 U
	3300 U					
10X25	3300 Y		1800 Y			
12.5X20	3300					
	4700 U					

* L, S = the last letter of part numbers.

Examples : EEUFJ0J102U···· ϕ 8 × 11.5 EEUFJ0J102 ···· ϕ 10 × 12.5 EEUFJ0J222U···· ϕ 10 × 16

Remarks


Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit


	Electrolytic Ca	pacitor Er	ngineer	ing Dra	ft			С	CE-E-AFJ-07
	A typ	be FJs	eries						3
Sta	Indard Ratings				D	atings			
						•	° 0		
	Category Temperature Range				-25	~ +105	C		
2	Rated Voltage Range				6.3 <i>·</i>	~ 50 V	.DC		
3	Capacitance Range				100 ·	~ 4700	μF		
									(120Hz 20°C
4	Capacitance Tolerance				± 20%				(120Hz 20°C)
5	Surge Voltage	R.V.	6.3	10	16	25	35	50	
1		s v	0	12	20	22	4.4	42	

		(V.DC)	S.V.	8	13	20	32	44	63	
	6	Rated Ripple Current			Page	e 10 ~	Page 1	11,Table	3	
	7	Impedance			Page	e 10 ~	Page 1	11,Table	3	
_										

4. Dimensions and Appearance

Body Color (Black) , Marking (Gold) Standard Long Lead (Suffix : Blank)

5-2 Construction Parts

	Parts	Materials		Parts	Materials
1	Lead Wire	Solid tinned copper weld		Separator	Manila hemp
		steel wire			
2	Vinyl Sleeve	Thermoplastic Resin	6	Anode Foil	High purity
					Aluminum foil
3	Aluminum Can	Aluminum	7	Cathode Foil	Aluminum foil
4	Sealing Rubber	Synthetic rubber	8	Electrolyte	_

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic	Capacitor	Engineering	Draft

CE-E-AFJ-07

A type FJ series

6. Performance Characteristics

Ne	lt e ve		<u> </u>	-	Teet	
No	Item	Performance Characteristics	Corio		Test ±10 Ω	
	Leakage Current	≦ I = 0. 01CV				
					d voltage r 2 minutes	
		I : Leakage current C : Capacitance	Meas	uring : Aitei	z minutes	
-	Canaaltanaa	V : Rated voltage	Maga	uring Fraguanay	: 120 Hz±20%	
2	Capacitance	Within the specified capacitance		uring Frequency uring Circuit		
		tolerance.		uring Voltage	: Equivalent se : +1. 5 ~ 2 V.	
			ivieas	uning vonage		
2	Tangent of Loss	Less than the table 1 value of page 9.	Moac	uring Frequency	$(\le 0.5V \text{ for A})$: 120 Hz±20%	U.)
S	•	Less than the table 1 value of page 9.		uring Circuit	: Equivalent se	rios circui
	Angle	Added 0, 02 per 1000 // E for items with		uring Voltage	: +1. 5 ~ 2 V.	
	(tan δ)	Added 0. 02 per 1000 μ F for items with	ivieas	uning vonage		
	Impodonoo	over 1000 μ F. 20°C Less than the initial limit.	Moac	uring Frequency	(≦0.5V for A : 100 kHz	0.)
4	Impedance			uring Temperature		+ 2°C
		-10°C (See page 10 ~ 11)			dance shall be i	
				point (2mm max. from		
				ig rubber) of the lea		u d
5	Characteristics at	Stop 2	Seam	ig lubbel) of the lea		
5	High and Low	Impedance Ratio :				
	Temperature	Ratio for the value in step 1 shall be	Sten	Test Tempe	rature	Time
	remperature	less than the value from table 2 in	1	20±		
		page 9.	2			*
		Step 4	3			15 minutes
		Leakage Current :	4	105±		2 hours
		\leq 800% of the value of item 6. 1.	5	20±		*
		Capacitance Change :	Imped	ance should be mea	sured at the fre	equency
		Within $\pm 25\%$ of the value in step 1		0 Hz±10%.		J
		Tangent of Loss Angle (tan δ):				
		\leq the value of item 6. 3.				
			* C	apacitors should be s	stored at each	
				mperature until mea		e or
				pacitance is stabiliz		
6	Surge	Leakage Current :		Temperature : 15 ~		
	-	\leq the value of item 6.1.		•		00 ± E0
		Capacitance Change :	Serie	Series Protective Resistance : $R = \frac{100 \pm 50}{C}$		
		Within $\pm 15\%$ of the initially				C
		measured value.				
		Tangent of Loss Angle (tan δ):	ſR	= Series protective	resistance (kΩ)	ר (
		\leq the value of item 6. 3.		=Capacitance (μ F)		J
		Appearance :		•	e voltage item 3	3. 5
		No significant change can be			cycles of $30 \pm$	
			L			
		observed.		"ON	" and 5 min. 30	sec. "OFF"

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor Engineering	Draft
------------------------------------	-------

CE-E-AFJ-07

A type FJ series

٧o	Item	Performance Characteristics	Test				
7	Robustness of						
	Terminations]	Diameter [mm] Pull Strength				
	Tensile]	$\phi 0.6$ 10 N				
			Applied above steady pull axially for a 10 ± 1				
		There is no damage or breakage after	seconds.				
	Bending	test.					
	Dending		Diameter [mm] Static Load				
			$\phi 0.6$ 5 N				
			At first, a capacitor is placed in vertical position				
			with the weight specified above being applied to				
			one of leads. Then the capacitor is slowly				
			rotated 90° to horizontal position and				
			subsequently returned to vertical position.				
			The above bending procedure takes for 2 \sim 3				
			seconds.				
			An additional bending is done in the opposite				
			direction.				
8	Vibration	Capacitance :	Frequency : 10 ~ 55 Hz				
		Measured value is to be stabilized	(1 minute per cycle.)				
		during test. (Measured several times					
		within 30 min.	Direction and Duration of Vibration :				
		before completion of test)	It is done in the X, Y, Z axis direction for 2				
		Appearance :	hours each, with a total of 6 hours.				
		No significant change can be	Mounting Method :				
		observed.	The capacitor shall be fixed with its lead wires				
		Capacitance Change :	at the point of 4 mm from the bottom of				
		Within $\pm 5\%$ of the initially	capacitor body. The capacitor with diameter greater than 12. 5 mm or longer than 25 mm must be fixed in place with a bracket.				
		measured value.					
9	Solderability	More than 3/4 of the terminal surface	Solder Type : H60A, H60S, or H63A (JIS Z3282)				
	···· ,	shall be covered with new solder.	Solder Temperature : 235±5 °C				
			Immersing Time : 2 ± 0.5 sec.				
			Immersing Depth : 1.5 \sim 2.0 mm from the root.				
			Flux : Approx. 25% rosin (JIS K5902)				
			in ETHANOL (JIS K8101)				
10	Resistance to	Leakage Current :	Solder Type : H60A, H60S, or H63A (JIS Z3282)				
10	Soldering Heat	\leq the value of item 6.1.	Solder Temperature : 260 ± 5 °C				
	Solucing riedt	Capacitance Change :	Immersing Time : 10 ± 1 sec.				
		Within $\pm 10\%$ of the initially	Immersing Depth : 1. 5 \sim 2. 0 mm from the root.				
		measured value.					
		Tangent of Loss Angle (tan δ):					
		\leq the value of item 6. 3.					
		Appearance :					
		No significant change can be					
		observed.					

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

CE-E-AFJ-07

A type FJ series

7
1

No	Item	Performance Characteristics	Test	
11	Solvent	There shall be no damage and legible		pyl Alcohol
	Resistance of	marking. Marking can be easily	Test Temperature : 20 ~	25 °C
	Marking	comprehended.	Immersing Time : 30 ± 5	sec.
12	Pressure Relief	Pressure relief shall be operated without	AC Current Method	
12		any hazardous expulsion or emission of		
		flame.		
		No emission of gas after 30 minutes of		
		the voltage application also meets the	Power supply	* <u>////</u>
		specification.	50Hz or 60Hz	ĭ
			(\widehat{A}) :A C. ammeter R : Series resis	ter
			(V):A.C. voltmeter Cx:Tested.cap	pacitor
			Applied Voltage :	
			AC voltage equals to rate	dWV×07or
			250 V (rms), whichever is	
			Capacitance	DC Resistance
			(μF)	(Ω)
			<u>≦</u> 1	1000±100
			>1 ≦10	100±10
			>10 ≦100	10±1
			>100 ≦1000	1±0.1
			>1000 ≦10000	0.1±0.01
			>10000	
			* When capacitance is over 1 of series resistance equals	
			tested capacitor's impeda	
			Reverse Voltage Method	ICE.
			A)
			+	
			D.C. Power supply	с× 7///
			-	o +
			(A):D.C. ammeter Cx :Test	ed capacitor
			Nominal Diameter [mm]	DC Current (A)
			≦22.4	1 (const)
			>22.4	10 (const)
rks	5			
i KS	•			
		Matsushita Electronic Components	Colltd ICR Davice Compa	nv
		Capacitor Busi		''y
		Capacitui Dusi		

A type FJ series

0	
0	

_	Item	Performance Characteristics	Test
13	Damp Heat	Leakage Current :	Test Temperature : 40±2 °C
	(Steady state)	\leq the value of item 6.1.	Relative Humidity : 90 ~ 95%
		Capacitance Change :	Test Duration : 240±8 hours
		Within $\pm 20\%$ of the initially	
		measured value.	After subjected to the test, capacitors shall
		Tangent of Loss Angle (tan δ):	be left for 2 hours at room temperature and
		\leq 120% the value of item 6. 3.	room humidity prior to the measurement.
		Appearance :	
		No significant change can be	
		observed.	
14	Endurance	Leakage Current :	Under 12.5mm Height
		\leq the value of item 6.1.	Test Temperature : 105±2 °C
		Capacitance Change :	Test Duration : $2000 + 72_{0}$ hours
		Under 12.5mm Height	Applied Voltage : Rated voltage
		Within $\pm 25\%$ of the initially	Over 15mm Height
		measured value.	Test Temperature : 105±2 °C
		(code"U","Y":±30%)	Test Duration $: 3000^{+72}$ hours
		Over 15mm Height	Applied Voltage : Rated voltage
		Within $\pm 35\%$ of the initially	
		measured value.	
		Tangent of Loss Angle (tan δ):	
		\leq 200% of the value of item 6. 3.	After subjected to the test, capacitors shall be left at
		Appearance :	room temperature and room humidity for 2 hours prior
		No significant change can be	to the measurement.
		observed.	
15	Shelf Life	Leakage Current :	Test Temperature : 105±2 °C
		\leq the value of item 6.1.	Test Duration : 1000 ⁺⁴⁸ ₀ hours
		Capacitance Change :	
		Under 12.5mm Height	
		Within $\pm 25\%$ of the initially	
		measured value.	
		(code"U","Y":±30%)	
		Over 15mm Height	After subjected to the test with no voltage applied,
		Within $\pm 35\%$ of the initially	capacitors shall undergo voltage treatment [*] and
		measured value.	be left for 1~2 hours at room temperature and
		Tangent of Loss Angle (tan δ):	humidity prior to the measurement.
		\leq 200% of the value of item 6. 3.	
		Appearance :	
		No significant change can be	

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

	Electrolytic Ca	pacitor Eng	ineering D	raft		CE-E-AFJ-()7
	A ty	pe FJ se	ries			9	
 a) Rated Vol b) Capacitan c) Negative F d) Matsushita e) Upper Cat f) Series Con g) Lot No. 8. Others	ce Polarity a Electric Tradema egory Temperatur de	rk e	a) b) c) d) e) f) g)	Rated Volt Matsushita Part Numb Packing Qu Serial No. Manufactur Country of	age, Capaci Electric Tr er Jantity rer's Name Origin		
Unless o	therwise specified	l, the product	shall confo	rm to JIS C	5141.		
Table 1. Tar	igent of Loss Angle	e(tanδ)				_	
V.DC	6.3	10 16	25	35	50]	
D.F.(max.)		0.19 0.16		0.12	0.10	1	
Added 0. 02 p	per 1000 μ F for it	ems with ove	r 1000 μ F ι	tems.			
■ Table 2.Cha	racteristics at low	temperature l	mpedance ra	atio (at 120	Hz)		
V.D			16	25	35	50	
Z(-25°C)/Z(2	0°C)(max.) 3	3	3	3	3	3	
Table 2 Free	wanay Correction	Contar of Da	tad Dinnla	Current			
Cap.	uency Correction	uency (Hz)		Current			
(μF)	120 1k		100k~				
100~330	0.40 0.7	5 0.93	1.00				
390~1000	0.50 0.8		1.00				
1200~4700 * Rated ripple	0.55 0.90 e current shall be		1.00				
		Whe					
lp=lxkf			Ip= I= kf=	Rated Rippl Specified R Frequency	e Current ipple Curre Correction	nt at 100 kHz Factor	
rated voltage	, the rated ripple	current shall Wh	pe calculate ere	ed by the fo	llowing forr	voltage exceeds its nula.	
lp'=π xf	x C x VN / √2 x	10 -6	p'= f = C = (VN=	Rated Ripple Frequency Capacitance Rated Volta	e Current [[Hz] e [uF] ge [V]	A rms]	
marks							
nuno							
	Matsushita Ele	ctronic Compo	nents Co.,L	td. LCR Dev	vice Compar	ıy	
		Canacit	or Business	Unit			

CE-E-AFJ-07

A type FJ series

10

Leakage Rated Ripple ESR										Endurance
Part No.	V.DC	Cap.	Current	Current	(Ωn	nax.)		Dim. [mm]	(hours)
		μF	μΑ	mA rms	100	kHz				
			max.	max.*1	+20°C	-10°C	ϕ D	L	ϕ d	h
EEUFJ0J561	6.3	560	35.2	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ0J821U	6.3	820	51.6	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ0J102U	6.3	1000	63.0	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ0J102	6.3	1000	63.0	1540	0.025	0.075	10	12.5	0.6	2000
EEUFJ0J122Y	6.3	1200	75.6	1490	0.028	0.084	8	15	0.6	3000
EEUFJ0J152L	6.3	1500	94.5	1870	0.016	0.048	8	20	0.6	3000
EEUFJ0J152U	6.3	1500	94.5	1540	0.025	0.075	10	12.5	0.6	2000
EEUFJ0J152	6.3	1500	94.5	2000	0.018	0.054	10	16	0.6	3000
EEUFJ0J182Y	6.3	1800	113.4	1870	0.016	0.048	8	20	0.6	3000
EEUFJ0J182U	6.3	1800	113.4	2000	0.018	0.054	10	16	0.6	3000
EEUFJ0J222Y	6.3	2200	138.6	1870	0.016	0.048	8	20	0.6	3000
EEUFJ0J222U	6.3	2200	138.6	2000	0.018	0.054	10	16	0.6	3000
EEUFJ0J222	6.3	2200	138.6	2550	0.013	0.039	10	20	0.6	3000
EEUFJ0J272U	6.3	2700	170.1	2550	0.013	0.039	10	20	0.6	3000
EEUFJ0J332U	6.3	3300	207.9	2550	0.013	0.039	10	20	0.6	3000
EEUFJ0J332Y	6.3	3300	207.9	2800	0.013	0.036	10	25	0.6	3000
EEUFJ0J332	6.3	3300	207.9	2800	0.012	0.036	12.5	20	0.6	3000
EEUFJ0J332	6.3	4700	296.1	2800	0.012	0.036	12.5	20	0.6	3000
ELUFJ0J4720	0.3	4700	270.1	2800	0.012	0.030	12.5	20	0.0	3000
EEUFJ1A471	10	470	47.0	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ1A681U	10	680	68.0	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ1A681	10	680	68.0	1540	0.030	0.075	10	12.5	0.6	2000
EEUFJ1A102L	10	1000	100.0	1870	0.016	0.048	8	20	0.6	3000
EEUFJ1A102U	10	1000	100.0	1540	0.025	0.075	10	12.5	0.6	2000
EEUFJ1A102	10	1000	100.0	2000	0.018	0.054	10	16	0.6	3000
EEUFJ1A152Y	10	1500	150.0	1870	0.016	0.048	8	20	0.6	3000
EEUFJ1A152U	10	1500	150.0	2000	0.018	0.054	10	16	0.6	3000
EEUFJ1A152	10	1500	150.0	2550	0.013	0.039	10	20	0.6	3000
EEUFJ1A222U	10	2200	220.0	2550	0.013	0.039	10	20	0.6	3000
EEUFJ1C331	16	330	52.8	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ1C471U	16	470	75.2	1140	0.030	0.090	8	11.5	0.6	2000
EEUFJ1C471	16	470	75.2	1540	0.025	0.075	10	12.5	0.6	2000
EEUFJ1C681Y	16	680	108.8	1490	0.028	0.084	8	15	0.6	3000
EEUFJ1C681L	16	680	108.8	1870	0.016	0.048	8	20	0.6	3000
 EEUFJ1C681U EEUFJ1C681	16 16	680 680	108.8 108.8	1540 2000	0.025	0.075	10 10	12.5 16	0.6	2000 3000
EEUFJ1C681 EEUFJ1C102Y	16	1000	160.0	1870	0.018	0.054	8	20	0.6	3000
EEUFJ1C102U	16	1000	160.0	2000	0.018	0.048	10	16	0.6	3000
EEUFJ1C1020	16	1000	160.0	2550	0.013	0.034	10	20	0.6	3000
EEUFJ1C152U	16	1500	240.0	2550	0.013	0.039	10	20	0.6	3000
EEUFJ1C182Y	16	1800	288.0	2800	0.012	0.036	10	25	0.6	3000

Remarks

*1 100kHz 105°C

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

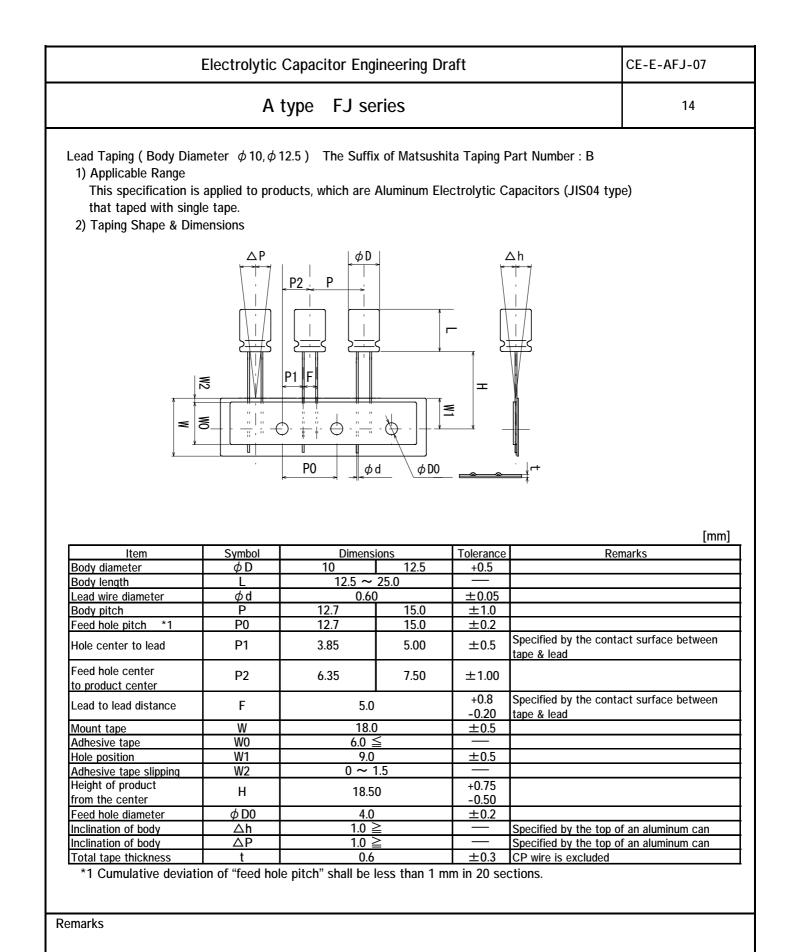
A type FJ series

11

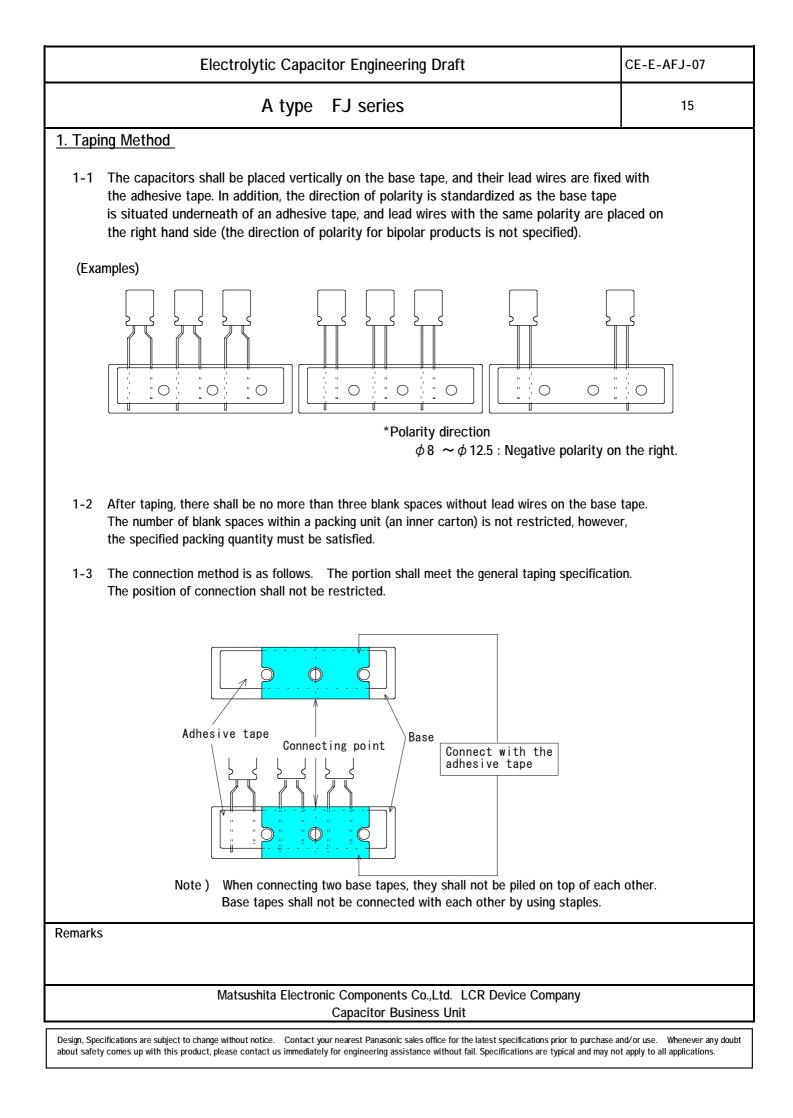
				Rated Ripple		SR				Endurance
Part No.	V.DC	Cap.	Current		•	max.)		Dim. [mm]	(hours)
		μF	μΑ	mA rms		kHz				
			max.	max.*1	+20°C	-10°C	φD	L	φ d	h
EEUFJ1E221	25	220	55.0	1110	0.030	0.090	8	11.5	0.6	2000
EEUFJ1E331U	25	330	82.5	1080	0.032	0.096	8	11.5	0.6	2000
EEUFJ1E331	25	330	82.5	1440	0.025	0.075	10	12.5	0.6	2000
EEUFJ1E471L	25	470	117.5	1820	0.018	0.054	8	20	0.6	3000
EEUFJ1E471U	25	470	117.5	1390	0.027	0.081	10	12.5	0.6	2000
EEUFJ1E471	25	470	117.5	1920	0.020	0.060	10	16	0.6	3000
EEUFJ1E681Y	25	680	170.0	1720	0.020	0.060	8	20	0.6	3000
EEUFJ1E681U	25	680	170.0	1830	0.022	0.066	10	16	0.6	3000
EEUFJ1E681	25	680	170.0	2180	0.016	0.048	10	20	0.6	3000
EEUFJ1E102U	25	1000	250.0	2060	0.018	0.054	10	20	0.6	3000
EEUFJ1V151	35	150	52.5	1110	0.030	0.090	8	11.5	0.6	2000
EEUFJ1V221U	35	220	77.0	1080	0.032	0.096	8	11.5	0.6	2000
EEUFJ1V221	35	220	77.0	1440	0.025	0.075	10	12.5	0.6	2000
EEUFJ1V331L	35	330	115.5	1820	0.018	0.054	8	20	0.6	3000
EEUFJ1V331U	35	330	115.5	1390	0.027	0.081	10	12.5	0.6	2000
EEUFJ1V331	35	330	115.5	1920	0.020	0.060	10	16	0.6	3000
EEUFJ1V391Y	35	390	136.5	1720	0.020	0.060	8	20	0.6	3000
EEUFJ1V391U	35	390	136.5	1830	0.022	0.066	10	16	0.6	3000
EEUFJ1V471	35	470	164.5	2180	0.016	0.048	10	20	0.6	3000
EEUFJ1V561U	35	560	196.0	2060	0.018	0.054	10	20	0.6	3000
	00	000	170.0	2000	0.010	0.001	10	- 20	0.0	
EEUFJ1H101	50	100	50.0	920	0.046	0.138	8	11.5	0.6	2000
EEUFJ1H121U	50	120	60.0	890	0.049	0.147	8	11.5	0.6	2000
EEUFJ1H151	50	150	75.0	1230	0.036	0.108	10	12.5	0.6	2000
EEUFJ1H181U	50	180	90.0	1180	0.039	0.117	10	12.5	0.6	2000
EEUFJ1H221L	50	220	110.0	1680	0.023	0.069	8	20	0.6	3000
EEUFJ1H221	50	220	110.0	1720	0.025	0.078	10	16	0.6	3000
EEUFJ1H271Y	50	270	135.0	1610	0.025	0.075	8	20	0.6	3000
EEUFJ1H271U	50	270	135.0	1630	0.029	0.087	10	16	0.6	3000
EEUFJ1H271	50	270	135.0	1890	0.029	0.063	10	20	0.6	3000
EEUFJ1H271	50 50	330	135.0	1890	0.021	0.063	10	20	0.6	3000
	50	330	105.0	1000	0.023	0.009	10	20	0.0	3000

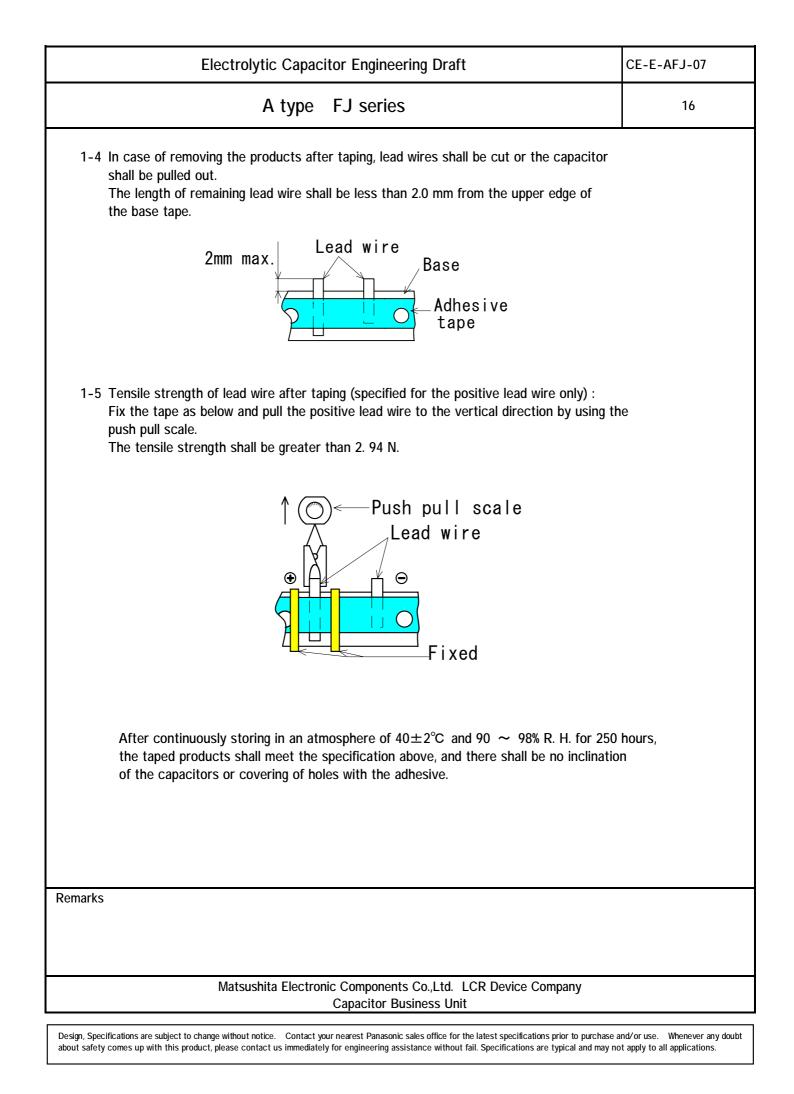
Remarks

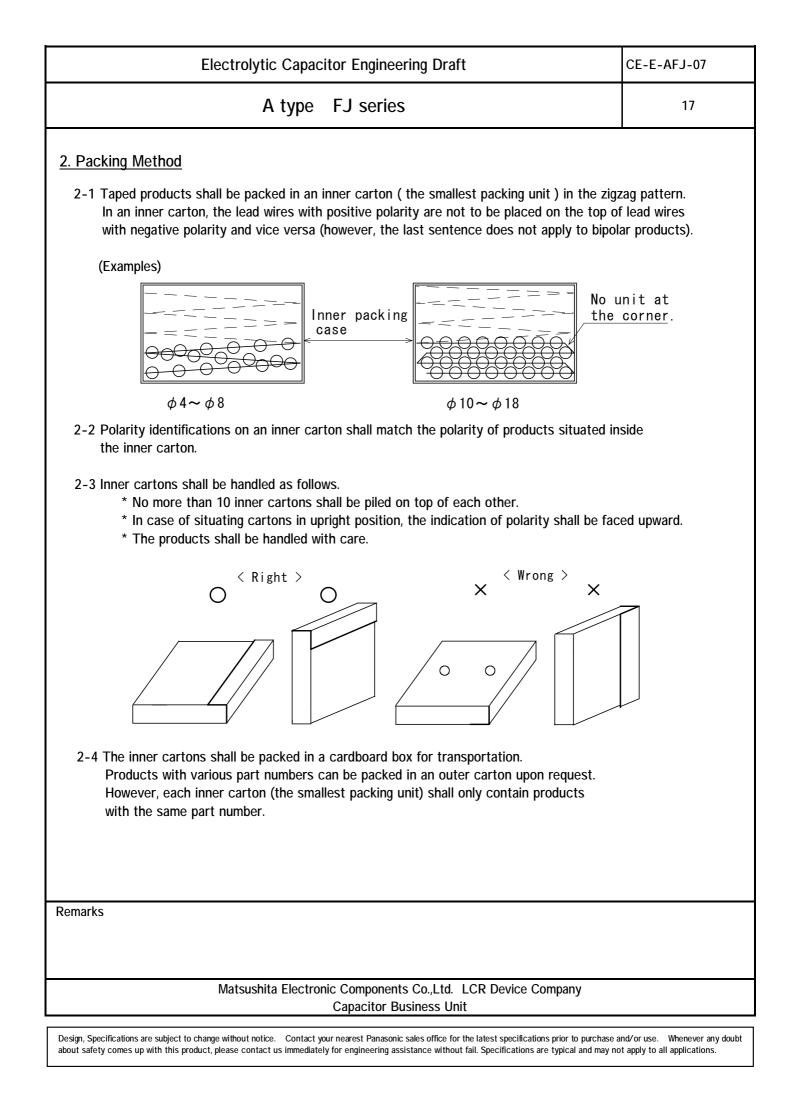
*1 100kHz 105°C


Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

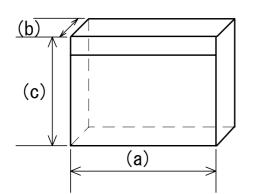
Electrolytic	Capacitor Engine	ering Draft		CE-E-AFJ-07
А	type FJ series	S		12
Snap-In Lead Formed Type (Mat	sushita Part No. Suffi	x : E)		
φ8 				
	<i> </i>	¢ D+0. 5max.		
φ 10 ~ φ 12.5				
			* Direction of ber	nding is random.
	H3 max. F±0.5 2.5 5.0 - 5.0 - 5.0	P E max. 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0	$\begin{array}{c c} \phi d \pm 0.05 & P \\ \hline \phi \\ \hline 0.60 & 1.0 \\ \hline 0.60 & 1.0 \\ \hline 0.60 & 1.0 \\ \hline \end{array}$	[mm] 2.W.B t 1.6 1.6 1.6
Remarks *The lead forming dime not to the customer's Due to the application not meet the specific	incoming inspection. n of mechanical stress			
Matsushita	Electronic Componen Capacitor B	ts Co.,Ltd. LCR Dev usiness Unit	ce Company	


	Electrolytic	Capacitor Engineerii	ng Draft	CE-E-AFJ-07
	Α	type FJ series		13
1) Applicable Range	applied to pro le tape.	The Suffix of Matsushita ducts, which are Aluminu $\triangle P$ ϕD		Capacitors (JIS04 type)
	W2 W0 W	P2 = P $P2 = P$ $P2 = P$ $P1 = F$		
			<u> </u>	[mm]
Item Dody diamotor	Symbol	Dimensions	Tolerance	Remarks
Body diameter Body length	φD L	<u>8</u> 11.5 ~ 20.0	+0.5	
Lead wire diameter	φd	0.6	±0.05	
Body pitch	P	12.7	±1.0	
Feed hole pitch *1	P0	12.7	±0.2	
Hole center to lead	P1	3.85	±0.5	Specified by the contact surface between tape & lead
Feed hole center to product center	P2	6.35	±1.00	
Lead to lead distance	F	5.0		Specified by the contact surface between
Mount tana	W	18.0	-0.2 ±0.5	tape & lead
Mount tape Adhesive tape	WO		<u>エU.5</u>	
Hole position	W0 W1	<u> </u>	±0.5	
Adhesive tape slipping	W2	0 ~ 1.5		
Height of product			+0.75	
from the center	Н	20.0	-0.50	
Lead wire clinch height	HO	16.0	±0.5	
Feed hole diameter	ϕ D0	4.0	±0.2	
Inclination of body	Δ h	1.0 ≧		Specified by the top of an aluminum can
Inclination of body	ΔP	1.0 ≧		Specified by the top of an aluminum can
Total tape thickness	t	0.6		CP wire is excluded
*1 Cumulative deviatior *2 Lead forming angle A=90° min		pitch" shall be less than	1 mm in 20 sec	ctions.


Remarks


Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit



Electrolytic Capacitor Engineering Draft CE

A type FJ series

2-5 The shape & dimensions of inner cartons shall be as follows.

Can s	size	(a)	(b)	(C)
φD	L			
φ8	~20	340	55	320
φ10	~16	340	55	320
	20	340	62	320
	25	340	66	320
φ 12.5	20	340	65	320

Note : The dimensions listed above are subject to change without notice, depending on the auto-insert machine.

2-6 Packing quantity

Product diameter	Inner carton quantity	Outer carton quantity
	Min. packing quantity	
(mm)	(pcs)	(pcs)
φ8	1,000	5,000
φ 10	500	2,000
φ 12.5	500	2,000

3. Storage

3-1 With respect to the handling method, follow Item 2-3 in this specification.

3-2 Products shall be out of direct sun light. In addition, the temperature and humidity shall be normal.

4. Ordering Unit

The order shall be placed with a multiple of the inner carton quantity.

Examples : ϕ 8 : minimum 1000 pcs

 ϕ 10 $\sim \phi$ 12. 5 : minimum 500 pcs

Remarks

* Label On the Packaging Box by English

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
Application Guidelines	19
Circuit Design I.1 Operating Temperature and Frequency Electrical parameters for electrolytic capacitors are normally specified at 20 °C temperature and 120 Hz fr These parameters vary with changes in temperature and frequency. Circuit designers should take these c	
 (1) Effects of operating temperature on electrical parameters a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance 	
 (2) Effects of frequency on electrical parameters a) At higher frequencies, capacitance and impedance decrease while tan δ increases. b) At lower frequencies, heat generated by ripple current will rise due to an increase in equivalent series 	s resistance (ESR).
 1.2 Operating Temperature and Life Expectancy (1) Expected life is affected by operating temperature. Generally, each 10 °C reduction in temperature Use capacitors at the lowest possible temperature below the upper category temperature. 	will double the expected I
(2) If operating temperatures exceed the upper category limit, rapid deterioration of electrical parameter w irreversible damage will result. Check for the maximum capacitor operating temperatures including ambient temperature, internal capa due to ripple current, and the effects of radiated heat from power transistors, IC's or resistors. Avoid placing components, which could conduct heat to the capacitor from the back side of the circuit	citor temperature rise
(3) The formula for calculating expected life at lower operating temperatures is as follows ; $L_{2} = L_{1} \times 2^{\frac{T_{1} - T_{2}}{10}}$ $L_{1} : \text{Guaranteed life (h) at temperature, } T_{1}^{\circ}C$ $L_{2} : \text{Expected life (h) at temperature, } T_{2}^{\circ}C$ $T_{1} : \text{Upper category temperature (°C)}$ $T_{2} : Actual operating temperature, ambient temperature + temperature rise due to ripple current l$	neating(°C)
I.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration of a capacitor's electrical parame In addition, rapid heating and gas generation within the capacitor can occur, causing the pressure relief ven resultant leakage of electrolyte. Under extreme conditions, explosion and fire ignition could result. The leaked electrolyte is combustible and electrically conductive.	
(1) Reverse Voltage DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or u polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.	ncertain
(2) Charge / Discharge Applications Standard capacitors are not suitable for use in repeating charge/discharge applications. For charge/ applications, consult us with your actual application condition.	discharge
(3) Over voltage Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge volta for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple vol the rated voltage.	
(4) Ripple Current Do not apply ripple currents exceeding the maximum specified value. For high ripple current applicati designed for high ripple currents. In addition, consult us if the applied ripple current is to be higher th value. Ensure that rated ripple currents that superimposed on low DC bias voltages do not cause rev	an the maximum specified
 I.4 Using Two or More Capacitors in Series or Parallel (1) Capacitors Connected in Parallel The circuit resistance can closely approximate the series resistance of the capacitor, causing an imba within the capacitors. Careful wiring methods can minimize the possible application of an excessive r capacitor. 	
(2) Capacitors Connected in Series Differences in normal DC leakage current among capacitors can cause voltage imbalances. The use of shunt resistors with consideration to leakage currents can prevent capacitor voltage imbalances.	of voltage divider
Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit	

20
o a solder bath, cathode termina
ocessed parts.
nces. ectrolyte leakag
tion.
the circuit board
and ignite.
ge.
r circuit paths. aths.
cally insulate to high

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption.
- If required, this voltage can be discharged with a resistor with a value of about 1k Ω .
- (3) Capacitors stored for a long period of time may exhibit an increase in leakage current.
- This can be corrected by gradually applying rated voltage in series with a resistor of approximately 1k Ω . (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be damaged and loss of electrolyte/shortened life can result.

2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before insertion.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the lead clinching operation done by auto insertion equipments does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Apply soldering conditions (temperature and time) based on the specification, or do not exceed temperature of 350 °C for 3 seconds or less.
- (2) If lead wires must be modified to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress on the capacitor leads.
- (4) Avoid physical contacts between the tip of the soldering iron and capacitors to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Apply proper soldering conditions (temperature, time, etc.). Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rise during the preheat operation and resin bonding operation can cause cracking of the capacitor's vinyl sleeve. For heat curing, do not exceed 150 °C for the maximum time of 2 minutes.

2.6 Capacitor Handling after Soldering

- (1) Avoid moving the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2) Do not use the capacitor as a handle when moving the circuit board assembly.
- (3) Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

(1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up to 5 minutes

and up to 60 °C maxiiciton 1(n)-6.5(1)-0.9(fo)5.9(r)5.8(.9(t)2,s1(33.6(r)7l)-9.1(I04(an)7.5(I)2533 0 T.- Tc0 T)5.92(I)-9Tc0 cl)15.7(ea)14.7(nin)11.4

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
Application Guidelines	22
2.8 Mounting Adhesives and Coating Agents When using mounting adhesives or coating agents to control humidity, avoid using materials containing haloger Also, avoid the use of chloroprene based polymers. Harden on dry adhesive or coating agents well lest the solvent should be left.	nated solvents.
After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between a and the circuit board.	the capacitor
 2.9 Fumigation In exporting electronic appliances with aluminum electrolytic capacitors, in some cases fumigation treatrusing such halogen compound as methyl bromide is conducted for wooden boxes. If such boxes are not dried well, the halogen left in the box is dispersed while transported and enters capacitors inside. This possibly causes electrical corrosion of the capacitors. Therefore, after performing fumigation and comake sure that no halogen is left. Don't perform fumigation treatment to the whole electronic appliances packed in a box.	in the
 3. Precautions for using capacitors 3.1 Environmental Conditions Capacitors should not be stored or used in the following environments. 	
 (1) Exposure to temperatures above the upper category or below the lower category temperature of the capaci (2) Direct contact with water, salt water, or oil. (3) High humidity conditions where water could condense on the capacitor. (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia. (5) Exposure to ozone, radiation, or ultraviolet rays. (6) Vibration and shock conditions exceeding specified requirements. 	tor.
 3.2 Electrical Precautions (1) Avoid touching the terminals of a capacitor as a possible electric shock could result. The exposed aluminu is not insulated and could also cause electric shock if touched. (2) Avoid short circuiting the area between the capacitor terminals with conductive materials including liquids so as acids or alkaline solutions. 	
 4. Emergency Procedures (1) If the pressure relief of the capacitor operates, immediately turn off the equipment and disconnect from the This will minimize an additional damage caused by the vaporizing electrolyte. (2) Avoid contact with the escaping electrolyte gas, which can exceed 100 °C temperatures. If electrolyte or gas enters the eye, immediately flush the eye with large amounts of water. If electrolyte or gas is ingested by mouth, gargle with water. If electrolyte contacts the skin, wash with soap and water. 	power source.
5. Long Term Storage Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a f and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This surge current could cause the circuit or the capacitor to fail. After one year, a capacitor should be recor rated voltage in series with a 1000 Ω current limiting resistor for a time period of 30 minutes.	
 5.1 Environmental Conditions (1) Exposure to temperatures above the upper category or below the lower category temperature of the capaci (2) Direct contact with water, salt water, or oil. (3) High humidity conditions where water could condense on the capacitor. (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia. (5) Exposure to ozone, radiation, or ultraviolet rays. (6) Vibration and shock conditions exceeding specified requirements. 	tor.
6. Capacitor Disposal When disposing capacitors, use one of the following methods.	
 (1) Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal press Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorin the polyvinyl chloride sleeve, etc. (2) Dispose as solid waste. 	
NOTE : Local laws may have specific disposal requirements which must be followed.	
Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit	
Design, Specifications are subject to change without notice. Contact your nearest Panasonic sales office for the latest specifications prior to purchase a about safety comes up with this product, please contact us immediately for engineering assistance without fail. Specifications are typical and may no	